DM 4: L'œil

A rendre le 20 octobre

Exercice 1 - Correction de la vision

Lentilles accolées

Deux lentilles minces quelconques L_1 (de centre optique O_1 et de distance focale f_1') et L_2 (de centre optique O_2 et de distance focale f_2') sont dites accolées lorsque $O_1O_2 << |f_1'|$ et $O_1O_2 << |f_2'|$ simultanément. Dans ce cas on note O le centre optique commun des deux lentilles ($O \approx O_1 \approx O_2$).

- 1. En prenant l'origine en O, quelle est la relation de conjugaison du système ainsi obtenu?
- 2. Exprimer la vergence de la lentille L équivalente à l'association des deux lentilles $L_1 + L_2$ en fonction des vergences V_1 et V_2 des lentilles L_1 et L_2 .

L'oeil myope

La myopie est un défaut de l'œil résultant d'une modification de la distance entre le cristallin et la rétine. Ce défaut de l'œil se manifeste par une vision floue des objets lointains, c'est-à-dire que le punctum remotum d'un œil myope se site à distance finie. On considère par la suite un œil myope pour lequel le punctum remontum se trouve à $40.0\,\mathrm{cm}$. On suppose que l'accomodation du cristallin n'est pas affectée par la myopie, ainsi que la distance focale du cristallin varie, comme pour un œil emmétrope, entre $f_1'=15\,\mathrm{mm}$ en l'absence d'accomodation et $f_2'=14.15\,\mathrm{mm}$ au maximum d'accomodation.

- 3. Calculer la distance d_m séparant le cristallin de la rétine pour cet œil myope.
- 4. Déterminer la position du *punctum proximum* de l'œil myope.

Afin de corriger cette myope, on utilise une lentille de contact assimilée à une lentille mince accolée au cristallin. On rappelle que l'association de deux lentilles minces accolées de vergence V_1 et V_2 est équivalente à une unique lentille de vergence $V=V_1+V_2$.

5. Déterminer la nature et la vergence de la lentille permettant de corriger cette myopie afin que la personne puisse voir un objet à l'infini sans accomoder?

Un autre défaut de l'œil est l'hypermétropie qui résulte d'une diminution de la distance entre le cristallin et la rétine par rapport à l'œil emmétrope. Considérons un œil hypermétrope pour lequel le cristallin est séparé de la rétine d'une distance $d_{\rm h}=14,\!80\,{\rm mm}$.

- 6. Déterminer les positions du punctum proximum et du punctum remotum de cet œil hypermétrope.
- 7. On utilise une lentille de contact afin de corriger cette hypermétropie. En supposant que la lentille de correction est accolée au cristallin, déterminer la nature et la vergence de la lentille permettant de corriger cette hypermétropie afin que la personne puisse voir un objet à l'infini sans accomoder?

Exercice 2 - Méthode de Bessel

On dispose un objet et un écran à une distance D l'un de l'autre. Une lentille de distance focale f' inconnue est placée entre l'objet et l'écran à une distance x de l'objet. On déplace la lentille et on constate qu'il y a deux positions x_1 et x_2 pour lesquelles on a une image nette sur l'écran. Vous pouvez visualiser cette méthode sur l'animation suivante : cutt.ly/SBEqUhC

On note $d = |x_1 - x_2|$ la distance entre ces deux positions.

1. Montrer, à partir de la relation de conjugaison, qu'on a la relation

$$\frac{d^2}{D^2} = 1 - \frac{4f'}{D}$$

2. A partir de cette relation, exprimer la distance focale f^\prime

On mesure les positions x_1 et x_2 de la lentille donnant une image nette pour différentes valeurs de la distance D entre l'objet et l'écran. Retrouver les résultats de la mesure ici : https://cutt.ly/1BEeKeS

3. En utilisant un traitement statistique, donner l'estimation de la valeur focale de la lentille, ainsi que son incertitude-type (cf fiche méthode sur les incertitudes et TP). Attention à l'écriture du résultat...